What You Need to Know About PTC Heaters

Author: CC

Nov. 04, 2024

What You Need to Know About PTC Heaters

Positive temperature coefficient (PTC) heaters consist of specialized heating discs built from advanced ceramic materials. These safe, powerful, and energy-efficient heaters allow for exceptional heat production and transfer within even the smallest spaces.

If you want to learn more, please visit our website PAKE.

PTC heaters fall into one of two categories: fin elements or honeycomb forms. While both types offer a wealth of benefits over conventional heaters, users should be aware of the strengths and weaknesses of each before deciding which option to go with.

FIN PTC Air Heater

FIN PTC air heaters are self-regulating systems that employ temperature-limiting effects that remove the risk of overheating. Because of these self-regulating features, FIN PTC air heaters always operate at the highest safety levels possible. These conditions also allow for better conductivity and higher efficiency, resulting in a longer lifetimes than other heating systems.

These machines circulate air through the use of large aluminum fins, whose surface area ensures homogeneous heat transfer with low outlet. Users can also adjust the airflow volume to automatically regulate the system&#;s heating power at any given time.

 

 

Honeycomb PTC Air Heater

Honeycomb PTC air heaters function below the combustion point of paper, meaning that they&#;re incredibly safe and energy-efficient for everyday use. In these units, small heating discs function as the heating element, connecting directly with the power source to convert electricity into heat.

Holes in each disc allow for greater airflow access, meaning that these heaters can process higher volumes of air than other heating systems. Honeycomb assemblies can hold three, four, or five discs at a time to produce up to 2,000 watts of heat output.

Applications of PTC Heaters in Various Industries

· Transportation: PTC heaters bring a wide variety of benefits to the automotive and aerospace industries. These systems provide compact, lightweight means to heat the interiors of planes and vehicles. Anything from seat and steering wheel heaters to plane de-icers will likely use a PTC heater.

· Healthcare: Because PTC heaters&#; high safety records, medical workers frequently turn to them for a variety of applications. PTC heaters work especially well as under-body heating systems on operating tables, gurneys, and beds.

· Recreational: Outdoor clothing manufacturers can weave PTC heaters into their clothing. Because of their ability to run open-loop (without the use of electronic controls), jackets, vests, socks, and gloves can all incorporate PTC heaters.

· Food and beverage: PTC heaters can keep foods and fluids at consistent temperatures while they&#;re being transported or stored for later use. These systems appear at many stages of the food processing and distribution process&#;processing plants, food transportation, and restaurants all benefit from PTC heaters.

· Public spaces: PTC heaters provide efficient, portable methods to heat outdoor venues such as restaurant patios, stadiums, and convention centers. Because of their light weight and energy efficiency, they can be moved and repositioned as needs and weather conditions change.

PTC Heaters Will Improve Your Home and Business

Dealing with dangerous and unreliable heaters can be stressful. PTC heaters improve on previous heater designs to provide safe, energy-efficient heating systems for applications large and small. Understanding the benefits to these heaters over traditional coil or ceramic chip options can help make a world of difference in both safety and effectiveness.

 

Self-regulating heater

Type of resistive heater

A positive-temperature-coefficient heating element (PTC heating element), or self-regulating heater, is an electrical resistance heater whose resistance increases significantly with temperature. The name self-regulating heater comes from the tendency of such heating elements to maintain a constant temperature when supplied by a given voltage.

PTC heating elements are a type of thermistor.

Properties

[

edit

]

PTC heating elements have large positive temperature coefficients of resistance, which means if a constant voltage is applied, the element produces a large amount of heat when its temperature is low, and a smaller amount of heat when its temperature is high. In comparison, most electrical heating elements also have positive temperature coefficients, but those coefficients are so small that the elements produce approximately the same amount of heat regardless of temperature.[1]

Some PTC heating elements are designed to have a sharp change in resistance at a particular temperature. These elements are called self-regulating because they tend to maintain that temperature even if the applied voltage[1] or heat load[2] changes. Below that temperature, the element produces a large amount of heating power, which tends to raise the temperature of the heating element. Above that temperature, the element produces little heating power, which tends to allow it to cool.

In some applications, this self-regulating characteristic allows PTC heaters to be used without thermostats or overtemperature protection circuits.[1] One very important use of self-regulating heating elements is to assure the heating element will not become so hot as to damage itself or other parts of the heater. In some applications where the heating element is directly connected to the item being heated a self-regulating heater may also provide adequate temperature control of the item to be heated.

However, many applications require control of two temperatures. For example, space heaters use heating elements much hotter than the room being heated. In these applications, a thermostat may be better able to sense and control the temperature of the item being heated. Nevertheless, a self-regulating heating element may still be used to keep the heating element from damaging itself or other parts of the heater.

Fast warm-up

[

edit

]

If the heat required to hold the desired temperature is known, a PTC heating element can be selected to provide the correct amount of heat at the desired temperature. Such a heating element will warm up quickly because it produces more heat at low temperatures. In contrast, a conventional heating element that produces the correct amount of heat at the desired temperature will produce the same amount of heat at low temperature, resulting in long warm-up times.

Adjustable heat output

[

edit

]

In some applications it is desirable to regulate the heat output (typically measured in watts) as opposed to regulating the temperature. The heat output of any electrical heating element can be regulated by regulating the electrical power input. PTC heating elements also can be regulated indirectly. For example, a PTC heating element with a sharp change in resistance at a particular temperature can be fitted with a constant voltage source and a variable-speed fan. With the fan at a low setting, the heating element draws only a small amount of current, resulting in a low heat output. With the fan at a high setting, the air draws away more heat, and the heating element responds by producing more heat.[citation needed]

The company is the world’s best Ptc Heater for Ventilator supplier. We are your one-stop shop for all needs. Our staff are highly-specialized and will help you find the product you need.

Adjustable temperature

[

edit

]

If being able to adjust the temperature is more important than holding a fixed temperature, then a PTC material whose resistance changes smoothly with temperature can be used. The temperature such a material tends to hold can be adjusted by changing the voltage applied.

More shapes of heating elements feasible

[

edit

]

PTC heating elements can be made in more shapes than conventional heating elements. Conventional heating elements are constrained to be long and thin (often coiled to save space) to prevent current hogging. If the element was made thick or irregular in shape, then there would be more than one path for the electrical current. The path with the least resistance would tend to heat more than the rest of the element. In severe cases, this would cause a cascading failure where the path of least resistance overheats and fails, redirecting the current to other parts of the element, leading them also to overheat and fail.

PTC elements can be built thick or irregularly shaped, because if one path through the element heats more than the rest, the resistance of the path will increase, redirecting the electrical current without overheating.[citation needed]

One application of a specially shaped heating element is to increase the surface area of the heating element. A large surface area means the element can operate at a lower temperature and still deliver a large amount of heat. The lower temperature may make a heater safer. However, other safety measures can assure the safety of conventional heaters.[citation needed]

Another application of a specially shaped heating element is to closely match the shape of the item being heated, which helps assure the object is maintained close to the same temperature of the heating element.[citation needed]

PTC materials

[

edit

]

Positive temperature coefficient heating elements can be made of several materials.

Ceramic type

[

edit

]

Although the most commonly available ceramic materials are electrical insulators, some conduct electricity with a positive temperature coefficient. Such PTC ceramic heating elements are often called "stones".[1][3]

Polymer

[

edit

]

Some polymers are suitable as PTC heating materials. These have the useful property that they can be made in the form of inks. Heating elements of complex shape can be easily manufactured using printing techniques. If the inks are printed onto a flexible substrate, then the whole heating element can be flexible.[4]

One type of polymer is a PTC rubber, which is a type of silicone rubber.

Operation

[

edit

]

Since PTC heating elements are a kind of thermistor, they share the same principles of operation. The details depend on the type of material, but a class of materials widely used are crystalline ceramics. During manufacture, dopants are added to give the material semiconductor properties. These materials have somewhat negative temperature coefficients at low temperatures and at high temperatures, however there is a temperature range in between where they have useful positive temperature coefficients. These materials have a critical temperature where the resistivity changes quite markedly. This temperature is called the Curie temperature because the material's magnetic properties also change markedly.

The temperature coefficient of a PTC heating element generally is a function of temperature. The Steinhart&#;Hart equation is often used to approximate this function. In some applications where the heater is used only in a narrow temperature range, a simple linear equation may be adequate.

References

[

edit

]

If you want to learn more, please visit our website Ptc Heater for Towel Dryer.

12

0

Comments

Please Join Us to post.

0/2000

All Comments ( 0 )

Guest Posts

If you are interested in sending in a Guest Blogger Submission,welcome to write for us!

Your Name: (required)

Your Email: (required)

Subject:

Your Message: (required)