What are the disadvantages of steel fibres?

Author: Evelyn w

Oct. 21, 2024

Fiber-reinforced concrete - Wikipedia

Concrete containing fibrous material which increases its structural integrity

well supply professional and honest service.

Fiber-reinforced concrete or fibre-reinforced concrete (FRC) is concrete containing fibrous material which increases its structural integrity. It contains short discrete fibers that are uniformly distributed and randomly oriented. Fibers include steel fibers, glass fibers, synthetic fibers and natural fibers [1]&#; each of which lend varying properties to the concrete.[2] In addition, the character of fiber-reinforced concrete changes with varying concretes, fiber materials, geometries, distribution, orientation, and densities.[3]

Historical perspective

[

edit

]

The concept of using fibers as reinforcement is not new. Fibers have been used as reinforcement since ancient times. Historically, horsehair was used in mortar and straw in mudbricks. In the s, asbestos fibers were used in concrete. In the s, the concept of composite materials came into being and fiber-reinforced concrete was one of the topics of interest. Once the health risks associated with asbestos were discovered, there was a need to find a replacement for the substance in concrete and other building materials. By the s, steel, glass (GFRC), and synthetic (such as polypropylene) fibers were used in concrete. Research into new fiber-reinforced concretes continues today.[4]

Fibers are usually used in concrete to control cracking due to plastic shrinkage and to drying shrinkage. They also reduce the permeability of concrete and thus reduce bleeding of water. Some types of fibers produce greater impact, abrasion, and shatter resistance in concrete. Larger steel or synthetic fibers can replace rebar or steel completely in certain situations. Fiber reinforced concrete has all but completely replaced bar in underground construction industry such as tunnel segments where almost all tunnel linings are fiber reinforced in lieu of using rebar. This may, in part, be due to issues relating to oxidation or corrosion of steel reinforcements.[5][6][7] This can occur in climates that are subjected to water or intense and repeated moisture, see Surfside Building Collapse. Indeed, some fibers actually reduce the compressive strength of concrete.[8] Lignocellulosic fibers in a cement matrix can degrade due to the hydrolysis of lignin and hemicelluloses.[9][10]

The amount of fibers added to a concrete mix is expressed as a percentage of the total volume of the composite (concrete and fibers), termed "volume fraction" (Vf). Vf typically ranges from 0.1 to 3%. The aspect ratio (l/d) is calculated by dividing fiber length (l) by its diameter (d). Fibers with a non-circular cross section use an equivalent diameter for the calculation of aspect ratio. If the fiber's modulus of elasticity is higher than the matrix (concrete or mortar binder), they help to carry the load by increasing the tensile strength of the material. Increasing the aspect ratio of the fiber usually segments the flexural strength and toughness of the matrix. Longer length results in better matrix inside the concrete and finer diameter increases the count of fibers. To ensure that each fiber strand is effective, it is recommended to use fibers longer than the maximum aggregate size. Normal concrete contains 19 mm (0.75 in) equivalent diameter aggregate which is 35-45% of concrete, fibers longer than 20 mm (0.79 in) are more effective. However, fibers that are too long and not properly treated at time of processing tend to "ball" in the mix and create work-ability problems.

Fibers are added for long term durability of concrete. Glass [11] and polyester [12] decompose in alkaline condition of concrete and various additives and surface treatment of concrete.

The High Speed 1 tunnel linings incorporated concrete containing 1 kg/m3 or more of polypropylene fibers, of diameter 18 & 32 μm, giving the benefits noted below.[13] Adding fine diameter polypropylene fibers, not only provides reinforcement in tunnel lining, but also prevents "spalling" and damage of lining in case of fire due to accident.[14]

Benefits

[

edit

]

Glass fibers can:

  • Improve concrete strength at low cost.
  • Adds tensile reinforcement in all directions, unlike rebar.
  • Add a decorative look as they are visible in the finished concrete surface.

Polypropylene and nylon fibers can:

  • Improve mix cohesion, improving pumpability over long distances
  • Improve freeze-thaw resistance
  • Improve resistance to explosive spalling in case of a severe fire
  • Improve impact- and abrasion-resistance
  • Increase resistance to plastic shrinkage during curing
  • Improve structural strength
  • Reduce steel reinforcement requirements
  • Improve ductility
  • Reduce crack widths and control the crack widths tightly, thus improving durability

Steel fibers can:

  • Improve structural strength
  • Reduce steel reinforcement requirements
  • Reduce crack widths and control the crack widths tightly, thus improving durability
  • Improve impact- and abrasion-resistance
  • Improve freeze-thaw resistance

Natural (lignocellulosic, LC) fibers and/or particles can:[15][16]

  • Improve ductility
  • Contribute to crack control via bridging
  • Reduce the negative environmental impact of the materials (GWP - global warming potential)
  • Reduce weight
  • LC (plant-based) fibers and particles can degrade in a cement matrix

    [

    17

    ]

    [

    18

    ]

Blends of both steel and polymeric fibers are often used in construction projects in order to combine the benefits of both products; structural improvements provided by steel fibers and the resistance to explosive spalling and plastic shrinkage improvements provided by polymeric fibers.

In certain specific circumstances, steel fiber or macro synthetic fibers can entirely replace traditional steel reinforcement bar ("rebar") in reinforced concrete. This is most common in industrial flooring but also in some other precasting applications. Typically, these are corroborated with laboratory testing to confirm that performance requirements are met. Care should be taken to ensure that local design code requirements are also met, which may impose minimum quantities of steel reinforcement within the concrete. There are increasing numbers of tunnelling projects using precast lining segments reinforced only with steel fibers.

Micro-rebar has also been recently tested and approved to replace traditional reinforcement in vertical walls designed in accordance with ACI 318 Chapter 14.[19]

Some developments

[

edit

]

At least half of the concrete in a typical building component protects the steel reinforcement from corrosion. Concrete using only fiber as reinforcement can result in saving of concrete, thereby greenhouse effect associated with it.[20] FRC can be molded into many shapes, giving designers and engineers greater flexibility.

High performance FRC (HPFRC) claims it can sustain strain-hardening up to several percent strain, resulting in a material ductility of at least two orders of magnitude higher when compared to normal concrete or standard fiber-reinforced concrete.[21] HPFRC also claims a unique cracking behavior. When loaded to beyond the elastic range, HPFRC maintains crack width to below 100 μm, even when deformed to several percent tensile strains. Field results with HPFRC and The Michigan Department of Transportation resulted in early-age cracking.[22]

Recent studies on high-performance fiber-reinforced concrete in a bridge deck found that adding fibers provided residual strength and controlled cracking.[23] There were fewer and narrower cracks in the FRC even though the FRC had more shrinkage than the control. Residual strength is directly proportional to the fiber content.

The use of natural fibers has become a topic of research mainly due to the expected positive environmental impact, recyclability, and economy.[24][25] The degradation of natural fibers and particles in a cement matrix is a concern.[26]

Some studies were performed using waste carpet fibers in concrete as an environmentally friendly use of recycled carpet waste.[27] A carpet typically consists of two layers of backing (usually fabric from polypropylene tape yarns), joined by CaCO3 filled styrene-butadiene latex rubber (SBR), and face fibers (majority being nylon 6 and nylon 66 textured yarns). Such nylon and polypropylene fibers can be used for concrete reinforcement. Other ideas are emerging to use recycled materials as fibers: recycled polyethylene terephthalate (PET) fiber, for example.[28]

Standards

[

edit

]

  • EN -1: &#; Fibres for Concrete. Steel Fibres. Definitions, specifications & conformity
  • EN -1: &#; Test methods for fibres in concrete
  • ASTM A820-16 &#; Standard Specification for Fiber-Reinforced Concrete (superseded)
  • ASTM C/CM - Standard Specification for Fiber-Reinforced Concrete
  • ASTM C-97 &#; Standard Test Method for Flexural Toughness and First-Crack Strength of Fiber-Reinforced Concrete (Using Beam With Third-Point Loading) (Withdrawn )
  • CSA A23.1-19 Annex U - Ultra High Performance Concrete (with and without Fiber Reinforcement)
  • CSA S6-19, 8.1 - Design Guideline for Ultra High Performance Concrete

See also

[

edit

]

References

[

edit

Want more information on Steel Fibers Craftsmanship? Feel free to contact us.

]

Steel fibre reinforced concrete | BECOSAN®

Steel fibre reinforced concrete is becoming the preferred alternative to replace traditional mesh reinforced concrete. The reason is that fibres offer remarkable qualities that improve the floor&#;s mechanical behaviour.

Concrete is a very hard and durable material. However, it is also a brittle material, being especially weak under tensile or flexural forces, which is why it cracks and chips easily.

To overcome this problem, during the construction process, liquid concrete can be poured over steel bars to create a stronger structure which is more durable.

On the other hand, steel bars expand and contract with temperature changes, for this reason, the concrete should be placed ideally on slabs with expansion joints between them.

But what if you want a concrete floor without expansion joints? How do you get the same strength without using steel bars? The answer is steel fibre reinforced concrete (SFRC).

What is steel fibre concrete?

Steel fibre concrete is a type of reinforced concrete. It&#;s basically made up of cement, water, sand, gravel and steel fibres. In some cases additives are added.

Steel fibres are discontinuous and isotropic, short metal reinforcements similar to metal filaments or threads. These can be corrugated, wavy or smooth, with flat or shaped ends.

Are generally recycled from other industrial activities. A popular source of steel fibre is automobile and truck scrap tires.

The SFRC short strands (usually about 4 or 5 cm in length) are added to the concrete mix in a ratio of between 25 and 100 kg per cubic meter of concrete, depending on the degree of reinforcement required. The mixture is then poured directly on site.

The metal fibre reinforcements are distributed throughout the concretes volume, modifying its properties in all directions.

A concrete reinforced with steel fibres is mainly characterized by having a high resistance to compression, traction and flexion. At the same time, it has better ductility and therefore, less tendency to crack.

A disadvantage of SFRC is the probability that some fibers will protrude through the concrete surface. A solution to this is the addition of a &#;dry shake&#; treatment during the curing process.

Dry shake is a granular mixture of cement, ground aggregate, pigment, and surface hardener that is spread across the surface of the new concrete whilst curing. The concrete is then leveled to create a smooth surface.

Advantages and disadvantages of using concrete with steel fibres

Steel fibre reinforced concrete has replaced wire mesh concrete because it allows optimizing construction processes, reducing execution time and construction costs.

Steel fiber reinforced concrete | BECOSAN®

However, using concrete with steel fibres has advantages and disadvantages. To gain a better understanding of steel fibre reinforced concrete, we present the advantages and disadvantages of its use.

Advantages of steel fiber reinforced concrete

  • The mechanical behaviour of the structure is the same in all directions thanks to the homogeneous distribution of the fibres.
  • Increases surface resistance to abrasion and erosion.
  • Increases durability, minimizing the appearance of cracks and fissures in concrete floors.
  • Provides greater resistance to compression, traction, torsion, and shear force, meaning a greater loading capacity.
  • Increases the persistence and ductility of traditional concrete.
  • Greater resistance to impacts, explosions, dynamic and cyclic loads.
  • It&#;s possible to combine with wire mesh, to create an even more resistant structural system.
  • Enables saving materials by creating thinner and lighter structures.
  • It allows to lay concrete floors up to m2 without joints and is, therefore, easier to maintain and clean.

  • The floor slabs can be up to 50% thinner than conventional slabs, which means that the SFRC is significantly cheaper.

Disadvantages of steel fiber reinforced concrete

  • Risk of the appearance of steel fibres on the structures surface.
  • The appearance of fibres affects the aesthetics of the structure.
  • An irregular mixing process of the concrete with the steel fibres can lead to the formation of balling fibres, reducing the material&#;s isotopic properties.
  • The use of steel fibres eliminates the concrete&#;s docility.
  • It&#;s crucial to accurately determine the type, amount and length of fibre that should be used.

When is it worth using concrete with steel fibres?

The evaluation of advantages and disadvantages of reinforced concrete with steel fibres clearly shows that it&#;s a beneficial material that is in consistency with its wide spectrum of application.

What is steel fibre reinforced concrete | BECOSAN®

Among the uses of steel fibre concrete are:

  • Prefabricated elements.
  • Tunnel lining.
  • Industrial flooring, military and commercial.

    , military and commercial.

  • Shotcrete.
  • High resistance concrete.
  • Lightweight concrete.

The industrial sector is one of the environments that has benefited the most from the steel fibre concrete performance. The construction of warehouses and storage areas with flooring (and walls) of reduced thickness offering large areas without joints.

In addition, industrial flooring with steel fibre are capable of withstanding the stresses and abrasion caused by the static and dynamic loads of industrial activity, minimizing the appearance of fissures, cracks and dust.

Steel fibre concrete flooring is recommended for industries with high traffic and heavy machinery.

How to make steel fibre reinforced concrete excellent?

We also recommend the use of the BECOSAN® System for this type of floor.

This system polishes the floor and removes any micro-roughness from the surface, increasing its resistance to wear by adding the BECOSAN® Densifier. Lastly, the floor is polished and treated with BECOSAN® Sealer to make it resistant to liquids.

The BECOSAN® treatment is one of the most outstanding treatments on the market. It uses a special formula that allows to densify and compact concrete floors, increasing its strength and improving its resistance and durability.

We offer concrete polishing services in the UK and Europe.

10 years dust proof guarantee. Unique BECOSAN® patent

Take a look

For more information, please visit Crimped Steel Fibers.

14

0

Comments

Please Join Us to post.

0/2000

All Comments ( 0 )

Guest Posts

If you are interested in sending in a Guest Blogger Submission,welcome to write for us!

Your Name: (required)

Your Email: (required)

Subject:

Your Message: (required)